FURUNO

スマート水産機械導入利用支援 公開成果報告会

-魚体重推定センサを用いた養魚管理に関する取り組み-

舶用機器事業部 養殖支援事業推進室 曽田 竜輔

FURUNO ELECTRIC CO., LTD. All Rights Reserved.

登録機器のご紹介

- 1-1.魚体重推定カメラのご紹介
- 1-2.Aqua Scopeのご紹介
- 1-3.推定精度について

魚体重推定カメラ

EX UC-300/600

【外観】

∞ UC-300

小型生簀用 対象魚:ブリ・カンパチ、マダイ、鯖など

【システム構成】

水中ケーブル

カメラユニット

タブレット

∞ UC-600

大型生簀用

対象魚:クロマグロ、ブリなど

通信ユニット

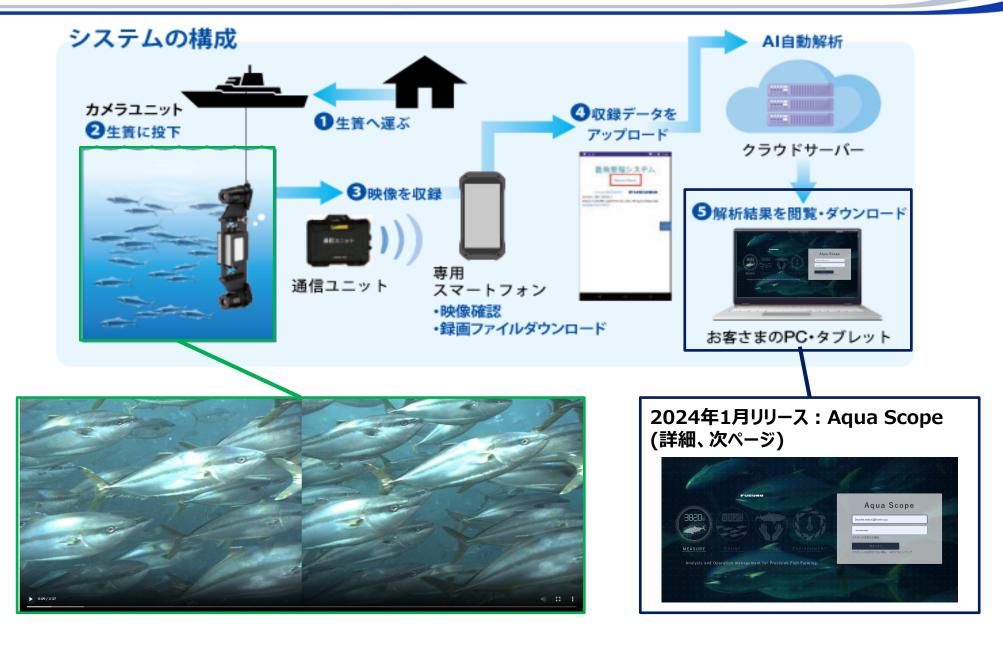
【対応魚種】

クロマグロ/ブリ/カンパチ/ヒラマサ/マダイ/シマアジ/ : AIによる自動解析

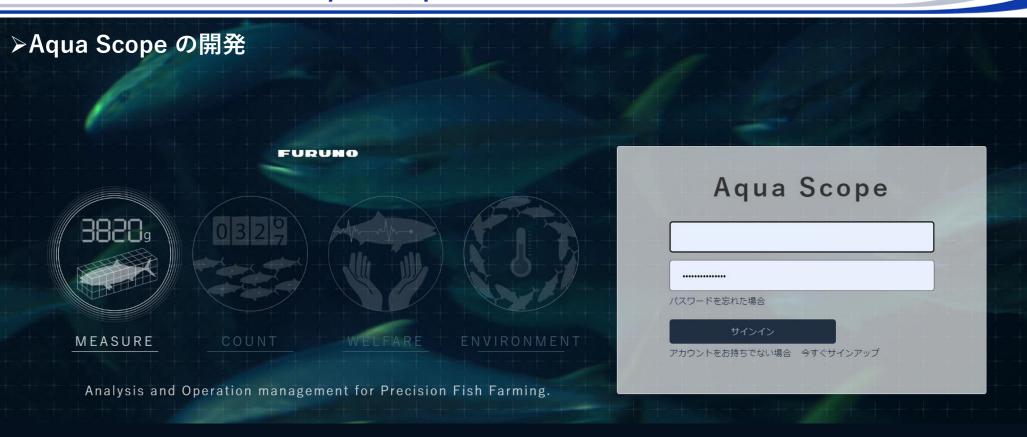
サーモン: AIによる自動解析 (一部対応)

▷海外展開も計画:

スペイン(クロマグロ)


中国(フウセイ・マルコバン)

<カメラ本体価格>


5,000,000円(税別)

<AI解析料金> お問い合わせ下さい

FURUNO 1-1. 魚体重推定カメラ

FURUNO 1-2. Aqua Scope

各種センサから得られた情報を集約 (養魚管理データベース)

FURUNO 1-2. Aqua Scope

様々なデータをグラフ表示。毎月/毎年の分析に貢献

W:魚体重 FL:尾叉長 CF:肥満度

version 1.0.0-20230824

© 2022 FURUNO ELECTRIC CO., LTD. All Rights Reserved.

魚体重推定精度:±5%、測長精度:±1.7%

	魚種	出荷重量(kg)	解析重量(kg)	推定誤差
養殖会社A	ブリ	4.95	4.88	-1.4%
養殖会社B	カンパチ	1.24	1.23	-0.8%
養殖会社C	マダイ(種苗A)	2.10	2.10	0%
	マダイ(種苗B)	1.90	1.97	3.5%

最小サイズの計測実績

	魚種	解析重量(kg)	尾叉長平均(m)	体高平均(m)
養殖会社D	シマアジ	0.07	0.15	0.05

(基本換算式+お客様自身で算出した補正値)

魚体重= $a \times (\mathbb{Z} \times 100)^b \times (\mathrm{A} \times 100)^c \times$ 補正値

(新換算式)

魚体重 $=a'\times(尾叉長\times100)^{b'}\times(体高\times100)^{c'}$ 地域や季節、種苗、養成環境に考慮した新換算式の作成(お客様ごとにカスタマイズ)

<事例> 冬場のブリの精度は正確ですが、夏のブリの推定魚体重が実測値に比べて上振れしている。

水引前RD重量: 2.987kg

①現行換算式:3.1501kg(+163g/肥満度17.8) ②試行換算式:2.9379kg(-50g/肥満度16.5) 水引前RD重量:2.863kg

①現行換算式:3.1129kg(+250g/肥満度17.5)

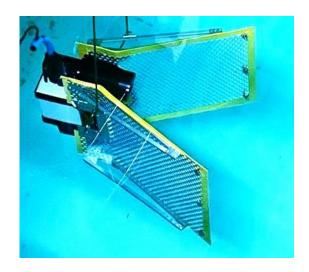
②試行換算式:2.9193kg(-56g/肥満度16.5)

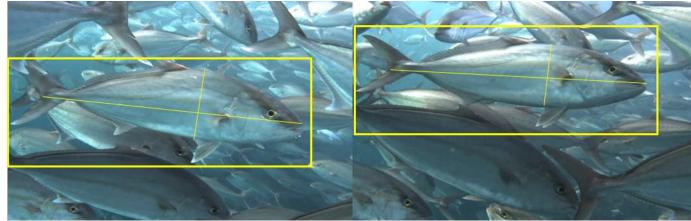
魚種に応じた計測手法の確立

動画観察:スタッフにとって養殖現場

魚類の行動生態:課題探求の場

深度ごとに(表層・中層・下層)魚体のサイズが異なる(マダイで確認済)




解決策:表層・中層・下層を満遍なく計測(深度別計測モード開発)

カメラに近寄ってくるカンパチの習性により、AIでの解析が困難

解決策:超広角カメラの開発、専用治具の開発

02

公募申請案件/導入実績

- 2-1.公募申請案件のご紹介
- 2-2.導入実績のご紹介

FURUNO ELECTRIC CO., LTD. All Rights Reserved.

申請案件:12台(うち6台が採択)

申請案件:

グループ① 三重県・愛媛県グループ (2/3補助にて申請) 採択

グループ② 愛媛県・長崎県グループ (2/3補助にて申請) 採択

グループ③ 三重県・香川県・愛媛県グループ (2/3補助にて申請) 不採択

グループ④ 三重県・和歌山県・鹿児島県グループ (1/2補助にて申請) 不採択 長崎県:1台 三重県:1台 愛媛県:4台

FURUNの 2-2. 導入実績(補助金活用 他)

スマート水産業補助事業(R3年度補正)

UC-600 6式/UC-300 12式 合計18式

スマート水産業補助事業(R4年度補正)

UC-600 1式/UC-300 5式 合計6式

養殖業体質強化事業

UC-300 2式 合計2式

県独自補助

UC-600 3式/UC-300 1式 合計4式

自費購入

UC-600 4式/UC-300 2式 合計6式

サブスクリプション契約

合計15件(事業所単位)

実績:51事業所

(機器購入:36件)

(サブスク:15件)

03 活用事例/お客様の声

- 3-1. 活用事例
- 3-2. お客様の声

FURUNO ELECTRIC CO., LTD. All Rights Reserved.

01

給餌機の評価検証

タイマー給餌機・AI給餌機・手やりで の給餌を比較し、それぞれの給餌で魚 体重の増減にどのような変化があるか 検証を実施している。

03

給餌制限・絶食の検証

飼料代高騰に伴い、給餌回数・給餌量 を少なくした生簀を設けて養成状況・ 増肉係数の観察をするために活用。

05

ワクチン投薬量の決定

ワクチン投薬量が多すぎると魚への悪 影響・費用負担が大きくなり、また少 ないと効果がないといった問題がある ため正確な魚体重を把握し、ワクチン 投薬量の決定に活用。 02

飼料代高騰に伴う 魚粉配合率変更の評価検証

原因は特定できておりませんが、今年 の養成魚は昨年よりも成長速度が遅く、 痩せているものが多いとのこと。

04

検量コスト削減

冬場の活性が低い状態や夏場の炎天下での作業、魚のストレスを考えると実計測は大きな負担となるため、魚体重推定カメラを活用。

06

網汚れの確認

網に大量の藻が付着していると生簀内が低酸素状態になり、生育状態や魚病の蔓延など悪影響の恐れがある。 下層域の汚れを把握し、適切なタイミングでの清掃に活用。

A水産様

B水産様

カメラを使い始めてから改めて作業の 簡便性を感じました! 本当にありがとうございます。

早期出荷する生簀は餌の量を変えているので、その生簀を見抜いて欲しい。

データを活用していくことが必要不可欠になる時代だと感じています。

信頼できる魚体重精度・スピーディーな対応をしてくださっているので、カメラなしの業務には戻れなくなりました。

<u> C水産様</u>

御社の換算式にて再計算して、AQ1 換算式よりも誤差が小さくなることを 確認しました。こちらで運用を進めて 参ります。次回の測定が楽しみです。 D水産様

出荷サイズと測定値がピッタリと一致していました。これまで測定誤差に悩まされてきましたので、フラストレーションの解放になりそうです。給餌管理および物流の技術革新になると思います。

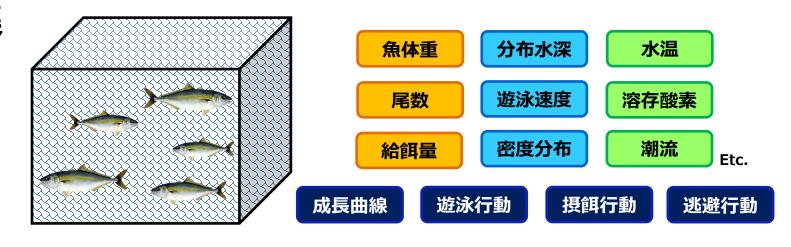
04

当社が目指す養魚管理支援サービス

- 4-1. 養魚管理の数値化を目指して
- 4-2. データの収集
- 4-3. データ分析

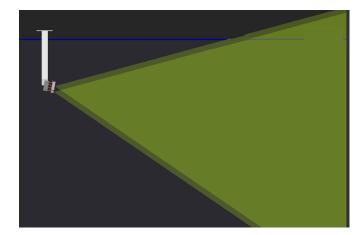
FURUNO ELECTRIC CO., LTD. All Rights Reserved.

養魚管理に必要なデータの科学的根拠に基づいた数値化


-経験的なアナログ思考から数字を共通言語としたデジタル思考-

養魚管理の数値モデル化(=養殖DX)

①データ収集



【データ収集のためのセンサー】

音響魚体重推定センサ

尾数カウントソナー(イメージ)

②データ分析

FURUNO

マグロ: 3,320 ブリ: 2,679 マダイ: 151 **6,456** カンパチ: 225 シマアジ: 81

データ収集後の分析が進んでいない・・・

魚体重

分布水深

水温

尾数

遊泳速度

溶存酸素

成長曲線

遊泳行動

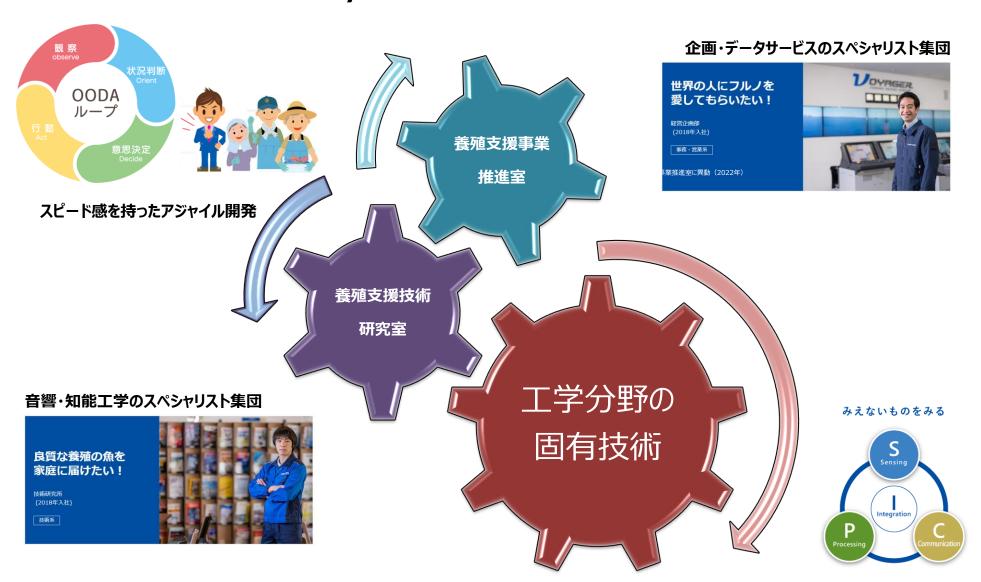
摂餌行動

逃避行動

給餌量

密度分布

潮流


Etc.

①環境要因による相違(水温、Do、急潮)

- ②種苗による相違
- ③餌の種類や給餌量による相違

高精度な計測による各種相違の検証

「養殖」に特化した新商品/サービスの企画・運用、研究開発体制の強化

全世界的な食の成長産業である養殖領域において、持続可能な儲かる養殖業を顧客と共に創る。

ご清聴を感謝します。ありがとうございました。